Discrete Differential Form Subdivision and Vector Field Generation over Volumetric Domain
نویسندگان
چکیده
This thesis presents a new method to construct smooth land 2-form subdivision schemes over the 3D volumetric domain. Based on the subdivided 1and 2-form coefficient field, smooth vector fields can be constructed using Whitney forms. To obtain stencils in the regular setting, classical 0-form subdivision and linear 1and 2-form subdivision over the octet mesh are introduced. Then, convoluting with a smooth operator, smooth 1and 2-form subdivision schemes in the regular case can be determined up to one free parameter. This parameter can be determined by a novel technique based on spectrum and momentum considerations. However, artifacts exist in boundary regions because of the incomplete regular support and the shrinking feature of the original 0-form subdivision scheme. To address these problems, the projection-scaling method and the expansion method are introduced and compared. The former method projects arbitrary discrete differential forms to a subspace spanned by low-order potential fields. The algorithm subdivides these potential fields and reconstructs the discrete form in the refined level using linear combinations. Scaling is included for elements near the boundary to offset the effect of mesh shrinkage. Alternatively, for the expansion method, a compatible nonshrinking 0-form subdivision scheme is constructed first. Based on the new 0-form subdivision method, extending 1and 2-forms beyond the boundary becomes natural. In the experiment, no noticeable artifacts, including attenuation, enlarging or undesirable bend, are found in practice.
منابع مشابه
Unstructured Computational Meshes for Subdivision Geometry of Scanned Geological Objects
This paper presents a generic approach to generation of surface and volume unstructured meshes for complex free-form objects, obtained by laser scanning. A four-stage automated procedure is proposed for discrete data sets: surface mesh extraction from Delaunay tetrahedrization of scanned points, surface mesh simplification, definition of triangular interpolating subdivision faces, Delaunay volu...
متن کاملConsolidation Around a Heat Source in an Isotropic Fully Saturated Rock with Porous Structure in Quasi-Static State
The titled problem of coupled thermoelasticity for porous structure has been solved with an instantaneous heat source acting on a plane area in an unbounded medium. The basic equations of thermoelasticity, after being converted into a one-dimensional form, have been written in the form of a vector-matrix differential equation and solved by the eigenvalue approach for the field variables in the ...
متن کاملYet Another Application of the Theory of ODE in the Theory of Vector Fields
In this paper we are supposed to define the θ−vector field on the n−surface S and then investigate about the existence and uniqueness of its integral curves by the Theory of Ordinary Differential Equations. Then thesubject is followed through some examples.
متن کاملChapter 3 Discrete Exterior
We present a theory and applications of discrete exterior calculus on simplicial complexes of arbitrary finite dimension. This can be thought of as calculus on a discrete space. Our theory includes not only discrete differential forms but also discrete vector fields and the operators acting on these objects. This allows us to address the various interactions between forms and vector fields (suc...
متن کاملar X iv : m at h / 05 08 34 1 v 1 [ m at h . D G ] 1 8 A ug 2 00 5 DISCRETE EXTERIOR CALCULUS
We present a theory and applications of discrete exterior calculus on simplicial complexes of arbitrary finite dimension. This can be thought of as calculus on a discrete space. Our theory includes not only discrete differential forms but also discrete vector fields and the operators acting on these objects. This allows us to address the various interactions between forms and vector fields (suc...
متن کامل